If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.842x-0.0876=0
a = 1; b = 0.842; c = -0.0876;
Δ = b2-4ac
Δ = 0.8422-4·1·(-0.0876)
Δ = 1.059364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.842)-\sqrt{1.059364}}{2*1}=\frac{-0.842-\sqrt{1.059364}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.842)+\sqrt{1.059364}}{2*1}=\frac{-0.842+\sqrt{1.059364}}{2} $
| 0=(1/4)x^2 | | -1=(1/4x)^2 | | 6c+1=40 | | 6+1c=40 | | 2x+79=x | | 2=-3y-10 | | 6w+13=0 | | 1+2t=47 | | 7n-5=5 | | -5x^2-6=0 | | 13+2c=19 | | -15=-(5/9*x) | | 9x^2+4x-6x=-5x+8 | | 3x=8=68 | | 5x÷5=16 | | -3(4+7x)=93 | | 2(3x-3)+2(2x-1)=52 | | -1.6-9x-8.3=13.712-8.8x-10.6 | | 1b+7=50 | | 33.99+45x=44.99+40x | | 12+1k=30 | | 12=x+35 | | x^2+0.894x-0.0876=0 | | 1/2(2x+6+4x+2)=5x-20 | | (2x+6)+(4x+2)/2=5x-20 | | x+3x+2=2 | | -2x+3=x+16 | | 15x+(-6×+5)-2-(-x+3)=-(7x+23)-x+(3-2x) | | 3/n=6-12 | | 5x^2-6x=4 | | 7m-34=49 | | 7m+24=39 |